#### Playing the Game: How Rookie Season Affects Basketball Career

Dan Rasay, Matthew Wong, Sari L Berger

## Introduction

Basketball is not quite the American past-time, but it is still fun, especially to watch. For many, part of the fun of basketball (and other sports) is being able to follow player and team statistics, and trying to predict who is better than whom. Our paper is about using available measurements to determine if the amount of minutes played in a player's rookie season in the National Basketball Association influences their overall linear Player Efficiency Rating, or how good a player they are. This quantitative measure is useful for team coaches and management when determining the cost/benefit of deciding whether a rookie should play or not.

#### **Literature Review**

Unfortunately, basketball is woefully deprived of advanced statistics; most of the discussion around the value of players is relying on rather basic statistics. A system of evaluation that relies on more than points scored, rebounds gotten, and assists made is rather desperately needed.<sup>i</sup>

Some measures proposed are Offensive Rating, which is designed to measure how good a Team's offense is,<sup>1</sup> and Defensive Rating, which "how good a team's defense is regardless of pace."<sup>2</sup> Other extremely helpful statistics include what Dean Oliver called the four factors. Those factors include Effective Field Goal Percentage<sup>3</sup>; Turnover Percentage[4]; Offensive Rebounding Percentage;<sup>5</sup> and Free Throw Rate.<sup>6 ii</sup>

Of course, measuring team efficiency is different than measuring players' efficiency. In the 1990s, ESPN columnist John Hollinger created a system by which someone can rank every player in the NBA based on their performance; he called it the Player Efficiency Rating (PER). Efficiency is broken down into offensive and defensive parts. Offensive efficiency is determined by points per possession, while defensive efficiency is determined by points allowed per possession. The primary units used to calculated the PER are points per shot attempt, the pure point rating, the assist ratio, the turnover rate, the rebound rate, and the usage rate. These units act as measures of performance.<sup>iii</sup>

Hollinger received criticisms for those claim; creators of other models claim that the metrics he uses are based more on belief regarding the players than actual statistics. Moreover,

Rasay, Wong and Berger 2

Hollinger has various weights for captured observations but never establishes that the chosen weights allow predictions on how many points a team scores or how many games the team wins.<sup>iv</sup> As a result, some people feel that Hollinger's metrics are not accurately representing efficiency of players, because it (like the NBA efficiency metrics), because they over-reward scoring without penalizing misses.<sup>v</sup>

We will be using a variant of Hollinger's equation; it uses linear weights to simplify the equation in the same fields, called the linear player efficiency rating (IPER). The IPER does account for misses by penalizing them. Our theory is that the more minutes played in the rookie season positively influences IPER rating in overall career.

## Methods

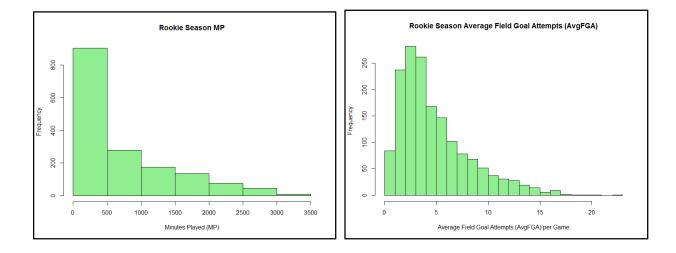
Our source data was taken from the downloadable 1948 to 2008 NBA data ZIP archive on DatabaseSports.com. Individual CSV files were loaded into a Microsoft SQL Server database to transform data & calculate player IPER values for regression analysis. The source data included regular season player data at both the season and career level. Although the source data included player records dating back to 1948 only 1979+ records had all of the parameters needed to calculate IPER. Thus we limited our analysis data set to regular season player data only and players whose careers started 1979 or later and ended before 2008 (ie. last year of the source data).

Using the "RODBC" package in R we imported the necessary data into R to generate descriptive statistics/plots and run/validate our linear regressions. Each x y specification was verified by: 1) applying natural log to x, y and both x & y 2) scatter plotting residuals 3) generating a residual histogram.

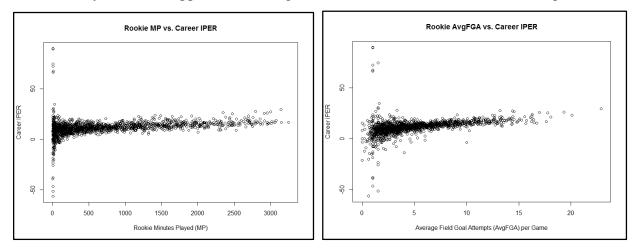
The source data was transformed into two different data sets used for our regressions. The first data set was at the player career level with the unit of measure being an individual player. Initially we defined the independent variable as rookie season minutes played and the dependent variable as *career IPER*. After running and validating rookie season minutes played (MP) we also decided to look at rookie season average field goal attempts by game (AvgFGA) to determine if it also had an independent, positive effect on IPER. The second data set was at the individual season level with season and team dummy variables used to address temporal and spatial fixed effects. There is a unique observation for each player/season/team combination.

Rasay, Wong and Berger 3

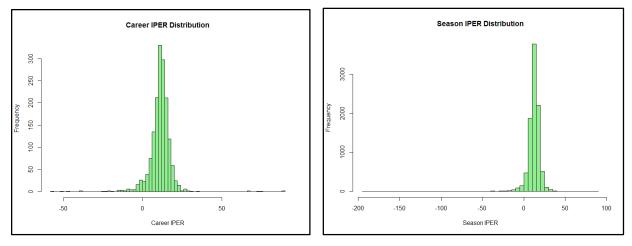
Players traded mid-season have a distinct observation for each team played on in a given season. Similar to the first data set, we used the same individual independent variables (Rookie MP & AvgFGA) but regressed against *season lPER* given the unit of measure (player/season/team). Both career and season lPER was calculated using Hein's formula below:


Note that additive measures have been highlighted in blue and subtractive measures in red.

Coaches and team management have the difficult job of winning as many games as possible and managing team/player morale all while developing younger talent. We chose to look at rookie season minutes played since coaches could easily incrementally increase time played which could influence the rookie player's effectiveness later in his career (IPER).


## **Results**

The two tables below show descriptive statistics for our two primary data sets (career and season). Values for RookieMP and RookieAvgFGA were not included in the season level table since the unit of measure was different.


| Descriptive statistics - Career level |                                             |                                                |                                                   | Descriptive statistics - Season level |                                                    |  |  |  |
|---------------------------------------|---------------------------------------------|------------------------------------------------|---------------------------------------------------|---------------------------------------|----------------------------------------------------|--|--|--|
| Statistic                             | RookieMP                                    | RookieAvgFGA                                   | Career_1PER                                       |                                       | Season_1PER                                        |  |  |  |
| N<br>Mean<br>St. Dev.<br>Min<br>Max   | 1,630<br>693.2245<br>747.3523<br>1<br>3,249 | 1,630<br>4.8160<br>3.4085<br>0.0000<br>22.8890 | 1,630<br>11.1459<br>7.6497<br>-56.3456<br>89.8000 | N<br>Mean<br>St. Dev.<br>Min<br>Max   | 9,333<br>12.3477<br>7.4071<br>-193.1948<br>89.8000 |  |  |  |



Rasay, Wong and Berger 4 The rookie season MP histogram shows that close to half of rookies play fewer than 500 minutes in their first year. There appears to be a log normal distribution of rookie season AvgFGA.



Scatter plots for both the rookie MP and AvgFGA show a positive relationship with career IPER. While there appear to be outliers close to zero in both plots there appears to be a strong positive correlation. Rookie MP and AvgFGA have a correlation with career IPER of 0.3333 and 0.4099 respectively.



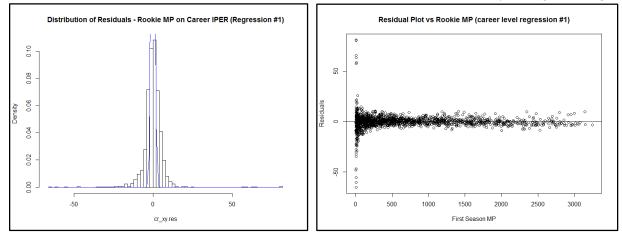
Based on their histograms both career and season IPER appear to be normally distributed.

## **Career Level Regression Analysis**

Initially we regressed rookie MP against career IPER (regression #1 in table below) and found a statistically significant coefficient (p=0.0002, f-statistic=203.490). Given that the coefficient was relatively small we then decided to regress rookie AvgFGA against career IPER (regression #2) which yielded a larger coefficient (0.920) and was also statistically significant (p=0.051, f-statistic=328.820). In an attempt to control for simultaneity (ie. better players get

more playing time and bad players get less playing time) we also performed MP and AvgFGA regressions on the middle 90% of players. We observed similar and slightly more significant results (p-value, r^2 & f statistic) with career regressions #3 & 4.

|                         | Dependent variable:           |                                |                                |                                       |  |  |
|-------------------------|-------------------------------|--------------------------------|--------------------------------|---------------------------------------|--|--|
| _                       | Career IPER (all players)     |                                | Career lPER (mid               | ldle 90% players)                     |  |  |
|                         | (1)                           | (2)                            | (3)                            | (4)                                   |  |  |
| Rookie MP               | 0.003***                      |                                | 0.002***                       |                                       |  |  |
|                         | (0.0002)                      |                                | (0.0001)                       |                                       |  |  |
| Rookie AvgFGA           |                               | 0.920***                       |                                | 0.741***                              |  |  |
|                         |                               | (0.051)                        |                                | (0.025)                               |  |  |
| Constant                | 8.781***                      | 6.715***                       | 9.615***                       | 7.837***                              |  |  |
|                         | (0.244)                       | (0.299)                        | (0.117)                        | (0.140)                               |  |  |
| Observations            | 1,630                         | 1,630                          | 1,466                          | 1,466                                 |  |  |
| R <sup>2</sup>          | 0.111                         | 0.168                          | 0.241                          | 0.379                                 |  |  |
| Adjusted R <sup>2</sup> | 0.111                         | 0.168                          | 0.241                          | 0.379                                 |  |  |
| Residual Std. Error     | 7.214 (df = 1628)             | 6.980 (df = 1628)              | 3.203 (df = 1464)              | 2.897 (df = 1464)                     |  |  |
| F Statistic 2           | $03.490^{***}$ (df = 1; 1628) | $328.820^{***}$ (df = 1; 1628) | $465.597^{***}$ (df = 1; 1464) | 894.808 <sup>***</sup> (df = 1; 1464) |  |  |
| Note:                   |                               |                                | *p                             | <0.1; **p<0.05; ***p<0.01             |  |  |


Rookie Season Minutes Played (MP) & Average Field Goal Attempts (AvgFGA) impact on Career IPER

Based on the MP coefficient for every one minute played a player's career IPER increases by 0.0034. A player's career IPER is modeled with the equation below:

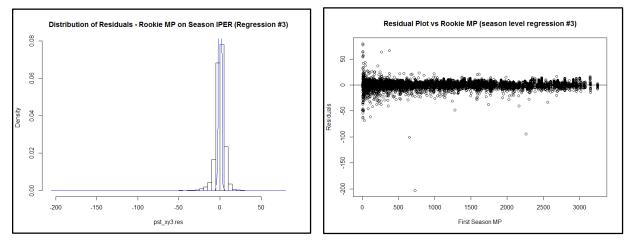
career 1PER = 8.781 + 0.003411851 \* rookie season minutes played Thus if the average player who plays 693 minutes in his rookie season with a projected 11.146 career IPER plays an additional four minutes per game over an 82 game season the player's career IPER would increase by approximately 1.11 to 12.256. (All teams 82 games per season, with 12 minutes quarters per game.) Based on the AvgFGA coefficient for every additional field goal attempt per game a player's career IPER increases by 0.0.920. Thus player's career IPER is modeled with the equation below:

career 1PER = 6.715 + 0.920 \* average field goal attempt per game Thus if the average player who has a AvgFGA of 4.816 in his rookie season with a projected 11.14 career IPER increase their FGA average by 1 the player's career IPER would increase by approximately 1.11 to 12.065.

Below are a residual histogram and plot against x for career regression #1.



Residuals for this regression were distributed normally and the plot of residuals against rookie has a handful of outliers close to zero but does not show any patterns.

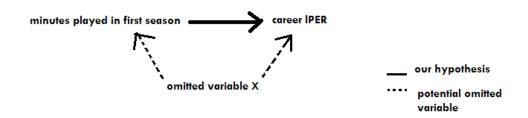

## Season Level Regression Analysis

Given the career level unit of measure we were unable to use panel data to control for fixed effects. In an attempt to control for fixed effects we ran regressions with (regressions 3,4,7,8) and without (regressions 1,2,5,6) dummy variables for season and team. Since players could be traded mid-season our unit of measure had to be player/season/team and our dependent variable unit of measure became season IPER. Similar to the career level regressions, we also performed regressions using the middle 90% of players to control for simultaneity. Across the board we found p<0.01 statistically significant coefficients & f-statistic values.

| Dependent variable:       |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Season IPER (all players) |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | Season lPER (middle 90% players)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (1)                       | (2)                                                                                                               | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4)                                                   | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.003***                  |                                                                                                                   | 0.002***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       | 0.002***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (0.0001)                  |                                                                                                                   | (0.0001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       | (0.0001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.0001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           | 0.778***                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.752***                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.623***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.606***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                           | (0.018)                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.018)                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| n                         | /a                                                                                                                | Year &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | è Team                                                | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Year &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | team                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                           | Note: Co                                                                                                          | efficients for ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ear and team du                                       | ummy variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | are not shown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | for brevity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9.547***                  | 7.018***                                                                                                          | 8.993***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.029***                                              | 9.895***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.885***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.495***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.879***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (0.119)                   | (0.144)                                                                                                           | (0.957)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.921)                                               | (0.111)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.145)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.882)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.864)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9,333                     | 9,333                                                                                                             | 9,333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9,333                                                 | 8,587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8,587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.088                     | 0.161                                                                                                             | 0.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.202                                                 | 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.087                     | 0.161                                                                                                             | 0.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.196                                                 | 0.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.076<br>(df = 9331)      | 6.783<br>(df = 9331)                                                                                              | 6.922<br>(df = 9266)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.640<br>(df = 9266)                                  | 6.374<br>(df = 8585)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.224<br>(df = 8585)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.268  C<br>(df = 8520)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.117<br>(df = 8520)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 895.106***                | 1,796.900***                                                                                                      | 21.491***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35.572***                                             | 523.853***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 969.217***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.632***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.766***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -                         | 0.003***<br>(0.0001)<br>n<br>9.547***<br>(0.119)<br>9,333<br>0.088<br>0.087<br>7.076<br>(df = 9331)<br>895.106*** | $\begin{array}{c ccccc} (1) & (2) \\ \hline 0.003^{***} & \\ (0.0001) & \\ & 0.778^{***} & \\ (0.018) & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Season IPER (all players)           (1)         (2)         (3)         (4) $0.003^{***}$ $0.002^{***}$ $0.002^{***}$ $0.002^{***}$ $(0.0001)$ $(0.0001)$ $0.752^{***}$ $0.752^{***}$ $(0.018)$ $(0.018)$ $(0.018)$ $$ n/a $$ Year & Team $$ Note: Coefficients for year and team due $0.547^{***}$ $7.018^{***}$ $8.993^{***}$ $7.029^{***}$ $(0.119)$ $(0.144)$ $(0.957)$ $(0.921)$ $9,333$ $9,333$ $9,333$ $9,333$ $0.088$ $0.161$ $0.127$ $0.196$ $7.076$ $6.783$ $6.922$ $6.640$ (df = 9331)         (df = 9266)         (df = 9266)         895.106^{***} | Season IPER (all players)S(1)(2)(3)(4)(5) $0.003^{***}$ $0.002^{***}$ $0.002^{***}$ $0.002^{***}$ (0.0001)(0.0001)(0.0001)(0.0001) $0.778^{***}$ $0.752^{***}$ $0.002^{***}$ (0.018)(0.018)(0.018) n/a Year & Team nNote: Coefficients for year and team dummy variables $9.547^{***}$ $7.018^{***}$ $8.993^{***}$ $7.029^{***}$ $9.333$ $9.333$ $9.333$ $9.333$ $8.587$ $0.088$ $0.161$ $0.133$ $0.202$ $0.058$ $0.087$ $0.161$ $0.127$ $0.196$ $0.057$ $7.076$ $6.783$ $6.922$ $6.640$ $6.374$ (df = 9331)(df = 9266)(df = 9266)(df = 8585) $895.106^{***}$ $1.796.900^{***}$ $21.491^{***}$ $35.572^{***}$ $523.853^{***}$ | Season IPER (all players)Season IPER (m(1)(2)(3)(4)(5)(6) $0.003^{***}$ $0.002^{***}$ $0.002^{***}$ $0.002^{***}$ $0.002^{***}$ $(0.0001)$ $(0.0001)$ $(0.0001)$ $(0.0001)$ $0.778^{***}$ $0.752^{***}$ $0.623^{***}$ $(0.018)$ $(0.018)$ $(0.020)$ $$ Note: Coefficients for year and team dummy variables are not shown $9.547^{***}$ $7.018^{***}$ $8.993^{***}$ $7.029^{***}$ $9.895^{***}$ $7.885^{***}$ $(0.119)$ $(0.144)$ $(0.957)$ $(0.921)$ $(0.111)$ $(0.145)$ $9,333$ $9,333$ $9,333$ $9,333$ $8,587$ $8,587$ $0.088$ $0.161$ $0.127$ $0.196$ $0.057$ $0.101$ $7.076$ $6.783$ $6.922$ $6.640$ $6.374$ $6.224$ $(df = 9331)$ $(df = 9266)$ $(df = 9266)$ $(df = 8585)$ $(df = 8585)$ $895.106^{***}$ $1.796.900^{***}$ $21.491^{***}$ $35.572^{***}$ $523.853^{***}$ $969.217^{***}$ | Season IPER (all players)         Season IPER (middle 90% players)           (1)         (2)         (3)         (4)         (5)         (6)         (7)           0.003***         0.002***         0.002***         0.002***         0.002***         0.002***           (0.001)         (0.0001)         (0.0001)         (0.0001)         (0.0001)         (0.0001)           0.778***         0.752***         0.623***         (0.020)         (0.018)         (0.020)           0.778 ***         0.018)         (0.018)         (0.020)         (0.020)         (0.020)           n/a         r Year & Team         n n/a         Year & Year |

#### Rookie Season Minutes Played (MP) & Average Field Goal Attempts (AvgFGA) Impact on Season IPER

Below are a residual histogram and plot against x for season regression #3.




Residuals for this regression were distributed normally and the plot of residuals against rookie MP does not show any patterns.

## **Conclusion:**

There is a statistically significant connection between a player's minutes played in the rookie season and their career IPER. Given that the f statistic values for the omitted variable bias were very significant, we cannot reject the idea that minutes played in first season are one of the

primary forces behind career IPER; that said, future research should consider variables other than season and team. Factors that we did not account for that may also help explain the connection include height, coaches, college basketball and playoff experience, and injuries.



Part of the reason we did not run regressions on these dummies was lack of available data. To control for outliers and simultaneity, we refined the data by removing some of the outliers at either end that may have skewed our results.

Obviously, the degree to which someone plays will affect how good they are. Our paper worked to answer the degree to which an increased amount of play time improved a player's efficiency rating, and we found there was a significant connection. Overall, the meaning of our results is that allowing rookies to play more minutes in their rookie season will result in an overall improvement in the rest of their career. However, it could mean that a team will give more minutes to an inherently talented rookie player, which would mean that raw talent is an omitted variable that we tried to control.

What coaches want matters. On the one hand, they want to prepare their rookie players for the future, but they also want to win current games. Using the IPER gives them a method of cost benefit analysis that measures the future benefit of letting rookie players have more minutes in their first season; that benefit is tangible enough that coaches should consider giving rookies enough minutes that they will improve.

4 As measured by turnover per 100 possessions.

<sup>1</sup> Using the formula ((points scored \* 100)/possessions)

<sup>2</sup> Using the formula ((points surrendered \* 100)/possessions)

<sup>3</sup> Which measures shooting percentage when accounting for three-pointers.

<sup>5</sup> How often a team rebounds its own missed shots.

<sup>6</sup> How well a team gets to the free throw line and converts the freebies.

## END NOTES

i. Zachariah Blot, "Advanced Basketball Statistics 101," Empty the Bench, last modified December 2009, http://www.emptythebench.com/2009/12/11/advanced-basketball-statistics-101/

ii. Ibid

iii. "Calculating PER", Basketball Reference, last modified 2015 <u>http://www.basketball-reference.com/about/per.html</u> iv. Ibid

v. DJ, "Do We Overvalue Rebounds?," The Wages of Wins Journal, last modified November 9, 2006 "http://wagesofwins.com/2006/11/09/do-we-overvalue-rebounds/

# Works Cited

Zachariah Blot, "Advanced Basketball Statistics 101," Empty the Bench, last modified December 2009, <u>http://www.emptythebench.com/2009/12/11/advanced-basketball-statistics-101/</u>

"Calculating PER", Basketball Reference, last modified 2015 <u>http://www.basketball-reference.com/about/per.html</u>

DatabaseSports.com, http://www.databasebasketball.com/

DJ, "Do We Overvalue Rebounds?," The Wages of Wins Journal, last modified November 9, 2006 "http://wagesofwins.com/2006/11/09/do-we-overvalue-rebounds/